
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1994

Performance visualization for parallel programs:
task-based, object-oriented approach
Jungsun Kim
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kim, Jungsun, "Performance visualization for parallel programs: task-based, object-oriented approach " (1994). Retrospective Theses and
Dissertations. 10618.
https://lib.dr.iastate.edu/rtd/10618

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10618?utm_source=lib.dr.iastate.edu%2Frtd%2F10618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com



www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfOm master. UMI 
fikns the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in ^ewriter face, while others may 
be from any type of computer printer. 

Hie quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order. 

UMI 
University Microfilms International 

A Bell & Howell Information Company 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9424232 

Performance visualization for parallel programs: Task-based, 
object-oriented approach 

Kim, Jungsun, Ph.D. 

Iowa State University, 1994 

U M I  
300 N. ZeebRd. 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

Performance visualization for parallel programs: Task-based, 

object-oriented approach 

by 

Jungsun Kim 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Electrical Engineering and Computer Engineering 
Major: Computer Engineering 

n Charge of Major Wor 

For the MajorTJepartment 

For the Graduate College 

Members of the Committee: 

Iowa State University 
Ames, Iowa 

1994 

Copyright © Jungsun Kim, 1994. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION 1 

Motivation 6 

Organization of the Dissertation 7 

CHAPTER 2. BACKGROUND 9 

Performance Monitoring 9 

Instrumentation 10 

Reasons for Performance Measurement 10 

A Statement of the Instrumentation Problem 11 

The Design Space 12 

Visualization 13 

Performance Visualization 15 

Standardization Effort For the Performance Visualization 15 

Performance Environment Architecture 16 

CHAPTER 3. RELATED WORK 20 

Belvedere 20 

PIE 20 

Seeplex 21 

HyperView 22 



www.manaraa.com

iii 

PICL and ParaGraph 23 

Portable Instrumented Communication Library (PICL) 23 

ParaGraph 26 

CHAPTER 4. PERFORMANCE METRICS 28 

CHAPTER S. OBJECT-ORIENTED PROGRAMMING 30 

Basic Concepts 30 

Pros and Cons 33 

Software ICs 35 

Concurrency 36 

CHAPTER 6. DESIGN GOALS 37 

CHAPTER 7. THE VISUALIZATION ENVIRONMENT 41 

The Object Oriented ParaGraph (OOPG) 41 

Trace Manager 43 

Filter Manager 46 

Controller 47 

Filters 47 

Views 50 

The Concurrent Object-Oriented ParaGraph (COOPG) 52 

Concurrency Models 54 

An Active Object: Task 56 

Software Design 62 

Performance Views 75 



www.manaraa.com

iv 

CHAPTERS. CONCLUSIONS 80 

Summary and Discussions 80 

Future Work 82 

BIBLIOGRAPHY 83 

ACKNOWLEDGEMENTS 88 



www.manaraa.com

V 

LIST OF TABLES 

Table 3.1: PICL Routines for Tracing 24 

Table 3.2: Verbose and Compact Format Trace Record Type Identifiers. 25 



www.manaraa.com

vi 

LIST OF FIGURES 

Figure 1.1: A Distributed Memory Concurrent Computer 2 

Figure 1.2: Performance Debugging 3 

Figure 2.1: Issues of Concern 11 

Figure 2.2: Related Areas of the Visualization 14 

Figure 2.3: Proposed Performance Displays 17 

Figure 2.4: Performance Environment Architecture [52] 19 

Figure 4.1: Three Dimensional Spaces for Performance Metrics 28 

Figure 5.1: An Object Module 31 

Figure 5.2: Benefits of the Object-Oriented Programming 34 

Figure 5.3: Software ICs 35 

Figure 7.1: Infrastructure of the Object-Oriented ParaGraph 42 

Figure 7.2: Graphical Interface for Tracefiles 43 

Figure 7.3: Hierarchy of Trace Record Classes 44 

Figure 7.4: Event Handling for Window Objects 48 

Figure 7.5: Class Hierarchy for Filters 49 

Figure 7.6: Creation of a Concrete View from an Abstract View 51 

Figure 7.7: Concrete View Instances 51 



www.manaraa.com

53 

55 

55 

63 

65 

67 

68 

70 

73 

73 

76 

77 

78 

79 

79 

vil 

Class Hierarchy in libPG.a 

Concurrency Models 

Concurrency Model in the COOPG 

Software Architecture of the COOPG 

States of a Filter 

Synchronization Points of the Filters 

Preprocessor and Scanner Objects . 

Proxies 

The COOPG Control Panel 

The Submenus for Views 

Performance Views in the COOPG . 

Gross Utilization 

Machine Visualizer 

Speed View 

Average Speed View 



www.manaraa.com

1 

CHAPTER 1. INTRODUCTION 

Advances in microcomputer and VLSI technologies have made it feasible to build 

a parallel processing system by interconnecting a large number of processors and/or 

memory modules. A parallel processing system can be organized as a distributed 

memory concurrent computer system as shown in Figure 1.1. 

A distributed memory concurrent system consists of a large number, possibly 

hundreds or thousands, of processing elements (PEs) interconnected in some topolo­

gies. Each PE contains a processor, a local memory, and a network interface circuit 

for connecting to other PEs. Specialized co processors for floating-point, communi­

cations, graphics, or second storage operations may also be included on a PE. This 

type of computer system is sometimes called a multicomputer system as compared 

to a multiprocessor system in which PEs share a global memory. Cooperation and 

synchronization among PEs are achieved via asynchronous message-passing mecha­

nism in multicomputers. The hypercube, the Butterfly, and the Transputer are a few 

examples that belong to multicomputers. 

Multicomputers are capable of solving large scale problems that cannot be solved 

efficiently in a conventional uniprocessor environment. However, developing and an­

alyzing performance of concurrent programs on multicomputers is not an easy task 

because of the added complexity due to the collective and simultaneous interaction 



www.manaraa.com

Figure 1,1: A Distributed Memory Concurrent Computer 



www.manaraa.com

3 

of many PEs engaged in computation and communication activities. Therefore, it is 

critical for programmers to have appropriate methods and tools which would offer 

insight into the development of parallel programs. 

Development of efficient parallel programs normally involves an iterative refine­

ment framework with three phases — design, measurement, and modification of the 

performance of successive computation prototypes as shown in Figure 1.2. This it­

erative performance fine-tuning is called performance debugging [29]. One goal of 

performance debugging is to produce an ideal program-machine mapping for a target 

machine to achieve an optimal performance. 

Design 

Instrumentation 

Measurement 
Performance 
Monitoring 

Analysis 
Visualization 

Figure 1.2: Performance Debugging 



www.manaraa.com

4 

Performance debugging is usually accomplished by performance monitoring which 

refers to the combined activities of program instrumentation and performance visu­

alization. Instrumentation answers the question, "What is observed?"; and visual­

ization, "How is it viewed?" [46]. Answers to these questions facilitate conceptual 

understanding of dymanic activities and performance fine-tuning for parallel pro­

grams. There is a producer-consumer relationship between instrumentation and vi­

sualization. Instrumentation generates performance related data. Visualization tools 

process, reduce, transform, and present collected data in the graphical format. There 

are other ways of representing instrumented information such as numbers and tables. 

However, graphics have been an effective way of delivering information to humans. 

Another driving force to the visualization is the X window system and the advance 

of high-resolution graphics technology. A variety of tools have been developed for 

monitoring parallel systems. The reader is referred to an extensive list of references 

in [21, 41, 52]. We will focus our attention on performance visualization in this 

dissertation. 

Performance visualization is an area of computer graphics that consists of tech­

niques and tools that allow program or data to be specified, observed and manipulated 

in a pictorial, rather than numerical or textual format [42]. Graphical representation 

of performance information greatly increases the bandwidth of man-machine commu­

nication. It facilitates human understanding and effective use of computer programs. 

The behavior of parallel programs on advanced architectures is often extremely com­

plex, and monitoring the performance of such programs can generate vast quantities 

of data. So it seems natural to use visualization to gain insight into the behavior 

of the parallel programs so we can better understand them and improve their per­



www.manaraa.com

5 

formance. Without visualization, programmers must often go through the tedious 

task of conceptualizing the relationships among an enormous amount of primitive 

raw numerical data. Eliminating this tedium is essential to making performance 

debugging a productive activity [29]. Recently, there is a growing interest in per­

formance visualization of parallel programs being executed on distributed memory 

concurrent computer systems as well as multiprocessor systems. Performance visual­

ization is now considered to be an integral component of a programming environment 

for parallel systems. 

To be effective and useful, a performance visualization tool must provide a rich 

set of views reflecting various aspects of performance data. Since the application 

domains for distributed memory concurrent computer system keep growing, the vi­

sualization tool should be flexible enough to accommodate unknown future demands 

of users (eg. new performance perspectives and application-specific views) with little 

effort. 

Most of the performance visualization tools to date, developed with conventional 

procedural programming languages, are generally not easy to expand, even if they 

are well structured. This is largely because the program design using procedure lan­

guages are inherently based on the functional decompositions of a target application. 

And procedural languages normally lack capabilities to support expandable design. 

Moreover, trace data and performance views are semantically tightly coupled in most 

cases. In case the trace record formats are changed or new trace record formats are 

introduced, significant portions of source code must be rewritten. An existing visu­

alization tool may not be reused on an application which requires a totally different 

set of trace record formats. 



www.manaraa.com

6 

Also when a performance view is tightly coupled with the performance aspect 

of which it is responsible, we may need to rewrite a view from scratch even if it has 

very similar characteristics as one of the previously developed views. This is really a 

waste of time and effort. 

Object-oriented programming provides a powerful mechanism to facilitate the 

design and implementation of extensible, resuable, and therefore general programs. 

An object-oriented programming also encourages a methodology for designing and 

creating a program as a set of autonomous components which can be developed 

independently. For the last decade, an object-oriented programming has been suc­

cessfully applied to a number of applications, especially to the applications which 

require highly interactive graphical user interfaces [49]. In developing our visual­

ization environment, called Concurrent Object-Oriented ParaGraph (COOPG), an 

object-oriented approach is adopted and as an implementation language, C-F-f is 

chosen. 

In this dissertation, we describe an object-oriented approach to general purpose 

performance visualization for parallel programs running on distributed memory con­

current computer systems. Lots of effort has been directed toward building a tool 

which is resilient to environmental changes. Our work is primarily based on the 

ParaGraph [20], a widely used performance visualization tool for parallel programs. 

Motivation 

As an effort to develop a parallel program development environment, a number of 

tools for performance monitoring have appeared for the last decade. Visualization of 

parallel computers has been the subject of recent Ph.D thesis [41, 43, 32], technical 



www.manaraa.com

7 

articles [3, 23, 20, 27, 32, 31, 34, 48, 50, 44], and even one book [52]. Integrated 

environments that combine parallel programming, debugging and monitoring have 

also been developed [13, 51]. Instead of enumerating and describing the currently 

available combinations of tools for instrumentation and visualization, we will focus 

our attention on one of the successful pairs on which our research is based — PICL 

[16] and ParaGraph [20]. 

Currently, at the Scalable Computing Laboratory in Ames Lab, PICL and Para­

Graph are adopted as our performance monitoring tools for the development of par­

allel programs on an nCUBE 2 system. Case studies of how these tools are applied 

to performance debugging and fine-tuning can be found in [46, 45]. We intend to 

enhance these tools for better performance and extensibility as a first step toward 

developing a fully integrated parallel program development environment. 

Organization of the Dissertation 

This dissertation is organized as follows. Introduction and motivation of the 

research is provided in this chapter. Chapter 2 describes the background informa­

tion and terms for the performance monitoring including the instrumentation and 

the visualization. A standardization effort in the area of performance visualization 

and a proposed performance environment architecture by a standardization work­

ing group are also briefly described in Chapter 2. Related works are reviewed in 

Chapter 3. Chapter 4 describes the performance metrics which must be measured 

and provided by a performance visualization environment. Chapter 4 introduces the 

basic concepts and terminology of an object-oriented programming. Advantages and 

disadvantages of an object-oriented programming and concurreny issues are described 



www.manaraa.com

8 

as well. Chapter 6 addresses the design goal of our performance visualization envi­

ronment. Chapter 7 describes the design and the implementation of two generations 

of our performance visualization environments — the Object-Oriented ParaGraph 

and the Concurrent Object-Oriented ParaGraph. Finally, discussion and conclusion 

are provided in Chapter 8. 



www.manaraa.com

9 

CHAPTER 2. BACKGROUND 

This chapter briefly explains the terms and background information about the 

performance visualization, along with the standardization effort for the performance 

visualization environment. "" 

Performance Monitoring 

Performance measures can be obtained by applying the following evaluation 

methods: benchmarks, monitoring (hardware or software), emulation, simulation, 

and analytical modeling. Benchmarks are intended to be used for the evaluation 

of a particular machine. Analytical modeling is too complicated to be applied to 

complex systems. Emulation and simulation are somewhat flexible but they cannot 

generally be used to analyze ordinary concurrent programs. Since we are interested 

in analyzing and debugging concurrent programs in complex multicomputer systems, 

monitoring is the method to be used. 

The instrumentation and the visualization compose an integral part of perfor­

mance monitoring tools. The instrumentation recognizes and records events of inter­

est as they occur to support the analysis of parallel programs. The visualization then 

processes the collected information and displays it in a reasonable format (graphical 

format) that a human can easily understand. 



www.manaraa.com

10 

Instrumentation 

Analysis of a program can be driven by a record of the major state transitions 

(events) produced by each cooperating process. Instrumentation involves observing 

and recording information at particular points in the system. In this subsection, 

the instrumentation design problem is defined by examining the ways in which the 

collected data will be used, and the constraints that are placed on the eventual 

solution. 

Reasons for Performance Measurement 

Performance measurement can be used for both system analysts or designers, 

and application programmers for their own purposes [41]. 

• System Analyst's View 

1. Capacity planning. System tuning, Guiding policy decision, and Account­

ing 

2. Design decision guide for future products 

3. Insight into the behavior of the operating system 

• Application Programmer's View 

1. Performance Debugging — the twin task of debugging for performance and 

debugging for correctness in a multiprocessor/multicomputer environment 

may require different approaches than have been employed in uniprocessor 

environments. Several research efforts have shown the utility of an event 



www.manaraa.com

11 

trace, that is a time ordered record of interactions and flow-control, in 

analyzing a parallel application's behavior. 

A Statement of the Instrumentation Problem 

There are four major questions for the designer of an instrumentation tool as 

shown in Figure 2.1. 

What are tho ovonts of Intorest ? 

How ara tHa avanta markad ? 

How ara tha marKad avanta datactad ? 

How ara the occurrences recorded ? 

J 
1 
1  

1 
Figure 2.1: Issues of Concern 

Many techniques have been used to collect information from running systems 

for post experiment analysis, and even in some cases, for analysis in real time [41]. 

There are tradeoffs that must be made in constructing a solution to the problem of 

designing a device that recognizes and records events as they occur, as event collector^ 

to support the analysis of parallel programs. It is assumed here that performance 

measurement is being conducted to aid in application performance debugging and, to 

a lesser extent, debugging for correctness. The following summaries the requirements 



www.manaraa.com

12 

of instrumentation tools [41]. 

1. Provide insight into the temporal and spatial relations between cooperating 

processes. 

• The data collection mechanism should produce a time ordered record of 

event occurrences. 

• The events of interest are related to the flow of control within the program 

and to the allocation of resources within the system. 

2. Must not be peculiar to a particular programming style, idiom, or environment. 

3. Time durations must be measurable to a constant resolution and reasonable 

accuracy. 

4. Must have minimal effect on running applications. 

• The runtime cost and perturbation caused by instrumentation mechanism 

should be predictable or minimal. 

5. Must be inexpensive. 

The Design Space 

Instrumentation techniques are classified into three categories according to the 

way in which events are marked, detected and recorded. 

• software instrumentation: events are recognized and recorded by software 

executing within the same system as the measured application. 



www.manaraa.com

13 

• hardware instrumentation: events are recognized and recorded by an agent 

external to the system executing the measured application. 

• hybrid instrumentation: events are marked by software inserted into the 

measured application, event recording is performed by an external agent. 

Software instrumentation is typically designed to collect and record high level ap­

plication and system events, such as entry and exit to program modules, scheduling 

transitions, I/O requests, and message send/receive requests. A potentially large 

overhead is a major problem. Hardware instrumentation has been used to collect 

events at the processor level, such as initiation and completion of memory access, 

cache hits and changes in task priority. Event recognition and collection impose no 

overhead on the instrumented system. Hybrid instrumentation has been employed to 

collect the low level events associated with hardware instrumentation and the soft­

ware level events associated with software instrumentation. Hybrid instrumentation 

takes advantage of both software and hardware instrumentations while overcoming 

the deficiencies of both. 

Visualization 

Recently, there has been a great deal of interest in systems that utilize graphics 

in human-computer communications, in programming, and in visualizing program, 

data and performance. By visualization we mean the use of visual representations 

(such as graphics, images, or animation sequences) to illustrate program, data, per­

formance statistics, or the dynamic behavior of a complex system. There are three 

closely related but different areas of visualization as shown in Figure 2.2: scientific 



www.manaraa.com

14 

Scientific 
Visualization 

Visual 
Programming 

Program 
Visualization 

Perofrmance 
Visualization 

Figure 2.2: Related Areas of the Visualization 

visualization, program visualization and visual programming. 

Scientific visualization is the visualization of application program results. It 

involves complex image processing and animation of the output data produced by 

supercomputer simulations, satellites, and measuring devices used in astronomy, me­

teorology, and medicine. Visual programming is the specification of a computer pro­

gram using graphics (icons). Program visualization is the use of graphics to enhance 

the understanding of a program that has already been written. The programs them­

selves are normally written in traditional languages. Program visualization normally 

relies on algorithm animation which illustrates the fundamental operations of the 

algorithm in the program, as compared to the program animation where the details 

of the code itself are displayed. Performance visualization seems to be a superset of 

program visualization because performance analysis should be based on the thorough 

understanding of the program behavior. 



www.manaraa.com

15 

In this dissertation, we restrict our attention to performance visualization. 

Performance Visualization 

Graphical visualization aids human comprehension of complex phenomena and 

large volumes of data. The behavior of parallel programs on advanced architectures 

is often extremely complex, and monitoring the performance of such programs can 

generate vast quantities of data. So it seems natural to use visualization to gain 

insight into the behavior of the parallel programs so we can better understand them 

and improve their performance. 

Graphical support for the visualization of programs and their run-time states 

and results gained momentum in recent years primarily because the falling cost of 

graphics-related hardware and software has made it feasible to use pictures as means 

of communicating with computers. The objective is to use high-resolution graphical 

displays to make the task of program development and testing easier. 

Design, analysis, implementation, and maintenance of a program involve mental 

activities not only based on the appearance of a program but also observations of 

how the program works, why it works, how the components are put together, what 

effects they have on each other, and so on. To assist in the programming process, 

a tool that provides multiple views of a program and its execution states would be 

more effective than a tool that focuses only on the program text. 

Standardization Effort For the Performance Visualization 

Like many different areas of computer systems, there has been an effort to provide 

standards in the performance instrumentation and visualization. And as a result. 



www.manaraa.com

16 

standard work group was formed. Establishing standards has advantages of merging 

advanced technologies being developed independently and avoiding duplication of 

efforts by providing common foundations. 

Malony and Nichols [52] indicates the performance instrumentation and visu­

alization are fairly promising areas for standardization. Since most of visualization 

tools were implemented based on the X window systems, it would be desirable to have 

a standard set of X window based performance views which can be shared on different 

environments. As for the need for the standardization of performance visualization, 

Malony and Nichols [52] said: 

Although there are many possible alternatives to presenting performance 
data graphically, there can be an attempt to standardize on the methods 
used for graphics programming so that independently developed perfor­
mance displays can be shared. ... However, it has been demonstrated 
clearly that color and graphics approach can be used effectively in pre­
senting performance data. Thus, a standard graphics approach to perfor­
mance visualization should allow basic performance displays to be con­
structed easily and shared, but should not be so simple that more exotic 
techniques cannot be explored. 

Bargraph, meters, timelines, matrix, call graphs, kiviat, pie graph, led, contour 

plot, surface and scatter plot implemented on top of X window system are initial list 

of performance displays that the standardization group proposed (see Figure 2.3). 

Performance Environment Architecture 

Along with the standardization efforts, the working group proposed the architec­

tural model of the HyperView environment as a design standard for the performance 

environment which integrates performance instrumentation, analysis and visualiza-



www.manaraa.com

17 

BarGraph 

rfl_ I 
iJt 

Kiviat 

Contour 

Led 

Timeline 

Scatter 

Call Graph 

Matrix 

Pie Graph 

Meter 

Figure 2.3: Proposed Performance Displays 



www.manaraa.com

18 

tion. Figure 2.4 shows a proposed general purpose performance environment archi­

tecture. 

The performance environment architecture supports a trace-driven, post-mortem 

performance analysis. The major components of it are Control, Filter, Strainer and 

Displays. Control is responsible for managing trace data and handling user's trace 

control inputs. Trace event dispatching to active filters and general configuration 

request are also performed by the Control. Filters are processing dispatched trace 

events to maintain internal performance-related information. There is a set of in­

terfaces defined for filters so that new filters can be developed in modular fashion 

while encapsulating filter functionality. Diverse performance aspects are finally dis­

played through a set of displays which together defines the display capabilities of the 

environment. Each display provides user definable attributes of the display through 

resource interfaces. Modular development of displays are also supported by the envi­

ronment architecture. User can define a subset of performance information of filters 

via strainers. In summary, the standard work group build a flexible and modular 

performance environment architecture by defining the standard interfaces between 

the filter, strainer and display. 



www.manaraa.com

19 

trace data 

user input 

events 
commands 

\/ \/ xy o o o 

Control 

Filters 

Strainer 

Displays 

event state resources 
Display Filter 

initO 
updateO 
un-update() 
destroyO 
tick() 
clearO 
dumpO 

sub-state 
selection, 
resource 
interface 

e.g. 
dials, bargraphs 
data sets 
graphics dimensions 
callback routines 
pixmaps/colormaps 

filter interface 

Figure 2.4: Performance Environment Architecture [52] 



www.manaraa.com

20 

CHAPTER 3. RELATED WORK 

Belvedere 

Belvedere [22] is a pattern-oriented, trace-based, post-mortem debugger for message-

passing multicomputers. It is one part of the Simple Simon Programming Environ­

ment which provides support for mutiprocessor simulation. Belvedere provides facili­

ties for animation and manipulation of interprocess communication patterns resulting 

from both control and data flows. It treats the event traces as a relational database 

and allows users to select portions of the database for animation. Both the simulator 

generated primitive events and user-defined abstract events can be animated. 

PIE 

PIE [51] (Programming and Instrumentation Environment) is a software devel­

opment environment for parallel processing that helps users to observe the execution 

behavior of application programs as well as operating system. It is designed for fast 

and correct performance debugging of parallel programs running on shared-memory 

multiprocessors. In addition, most of the support to parallelize the application is au­

tomatically generated by the PIE. Major components of the PIE includes the Modular 

Programming (MP) metalanguage, the program constructor, and the implementation 

assistant. PIE provides an animated graphical representation of program objects and 



www.manaraa.com

21 

their relationships. During execution, several graphical displays show the status of 

the computation, including a dynamic invocation tree, which shows utilization of 

processes and processors, and a bar graph, which shows cumulative statistics. It is 

built on top of Mach operating system using X window system, but can be ported to 

other Unix-like operating systems. 

Seeplex 

Seeplex [10, 27] is a part of a larger tool called Triplex, a collection of software 

tools which aid the programmer in developing algorithms and monitoring executions 

on the NCUBE multicomputer. The tools address the problem of understanding 

the behavior of parallel programs in terms of both correctness and performance. 

Triplex consists of three components — Simplex, Seeplex, and Commplex. The 

Simplex is an operating system for the NCUBE. It measures and collects an enormous 

number of execution-related data. The Seeplex is a color graphics display program for 

viewing depictions of program execution collected by the Simplex in a large number of 

different ways. Simplex and Seeplex operate as tightly coupled programs to support 

real-time and offline debugging and performance monitoring. The Commplex is a 

communications package for communication with the NCUBE from Sun workstations. 

Seeplex is extended from one of the first performance visualization tools called 

Seecube. It has an emphasis on the scalable monitoring, i.e, schemes which will work 

regardless of the number of processors or the sophistication of measurement desired. 



www.manaraa.com

22 

HyperView 

HyperView [32] is an interactive performance visualization environment system 

that integrates performance data analysis and visualization to help the performance 

analysts to browse through a trace system and application execution. The first gen­

eration HyperView provides a diversity of views reflecting architectural and system 

activity. One notable feature of it is the decoupling of data analysis and display 

components. This decoupling has several advantages — visualization independent of 

target machine, enhanced performance through distributed processing, and dynamic 

system reconfiguration without changing the interface between components when 

adding new data analyses and displays. Since, however, the first generation Hyper­

View has a limitation of inextensibility to the display of application performance, 

the second generation HyperView was developed to address this problem. Flexibility 

and dynamic reconfigurability were primary design goals of the second generation 

HyperView. 

User interface, an event preprocessor, a set of filters, a set of strainers, and 

a set of display views are components of the HyperView infrastructure. An trace 

event stream is converted into the standard format through the event preprocessor. 

Filters process converted trace events and maintain an internal event information 

for each node like message counts, volumes, size, source and destination node, node 

utilization, and program state. The internal event information can be displayed in 

a variety of ways using the semantically independent views. Each filter maintains a 

set of strainers to produce a view specific data representation from the internal filter 

state. User can configure and manage the filters, strainers, and views through the 

user interface when changing attributes of performance views or opening new views. 



www.manaraa.com

23 

Design of HyperView was inspired by Seecube, and many views were borrowed 

from Seecube. While Seecube was built for the SunView window environment, Hy-

perView's implementation was baaed on the X window system. 

PICL and ParaGraph 

Portable Instrumented Communication Library (PICL) 

PICL [16] is an interface library that can be used to develop concurrent programs 

on several multicomputers. This package was developed at the Oak Ridge National 

Laboratory in 1990. PICL provides generic low-level communication primitives and 

high-level communication operations on a large platform of message-passing multi-

computers. These operations are portable in the sense that communication routines 

can be specified independent of target machines. Users are provided with an efficient 

and uniform interface for programming a reasonably wide range of message-passing 

machines, building that interface on top of whatever tools are provided by the un­

derlying operating system. Low-level communication and system interface routines 

provide a portable syntax for message-passing programs. The high level routines are 

designed to run on various network topologies so that user can take advantage of the 

physical interconnection network and algorithm characteristics. 

Furthermore, the library provides an execution tracing facility that can be used 

to monitor the performance of parallel programs or to aid in performance debugging. 

Table 3.1 shows PICL routines for tracing. 

The event tracing facility of PICL can be classified as a software instrumenta­

tion. The trace information is obtained by instrumenting the library without any 

modification of user code. A user can control the type and volume of trace data. 



www.manaraa.com

24 

Table 3.1: PICL Routines for Tracing 

traceenable: Enable tracing and specify the name of the trace file. 
tracehost: Begin tracing on the host. 
tracenode: Begin tracing on a node processor. 
tracelevel: Specify the amount and type of trace information. 
traceinf0 : Return the current tracelevel specification. 
tracemark: Generate a user-typed trace record. 
tracemsg: Write a line of text directly into the trace file. 
traceflush: Send trace information to the trace file now. 
traceexit: Stop tracing. 

The trace information consists of a record- of events (message sending or message 

receiving, etc.). A trace record is an integer set that specifies the event type, time 

stamp, processor number, message length, and other useful information. The record 

type is indicated in Table 3.2. 

Considerable effort has been made to achieve clock synchronization and to min­

imize the effect on the running programs. As pointed out in Chapter 2, clock resolu­

tion and its accuracy is vitally important not to invalidate the presented information. 

PICL trys to synchronize the clock and adjust for potential clock drift, so the time 

stamps are as consistent and as meaningful as possible. PICL also minimizes the 

overhead of instrumentation by collecting trace data on the local memories while 

the program is running. After an instrumented program has finished execution, the 

trace data are transferred to the host. The added overhead is a function of the 

frequency and volume of communication traffic. In general, program perturbation 

is small enough that the behavior of the uninstrumented program is not changed 

fundamentally. 

PICL is implemented on the assumption that interprocessor communication is 



www.manaraa.com

25 

Table 3.2: Verbose and Compact Format Trace Record Type Identifiers. 

compact format integer verbose format keyword 
1 trace-Start 
2 -open 
3 load 
4 send 
6 recv 
7 recv-blocking 
8 recv-vaking 
9 message 

10 sync 
11 compstats 
12 commstats 
13 close 
14 trace-level 
15 trace-mark 
16 trace-message 
17 trace-Stop 
18 trace-flush 
19 trace-exit 
20 block-begin 
21 block-end 



www.manaraa.com

26 

interrupt-driven and that messages can be routed between any pair of chosen PEs. 

Currently at the Scalable computing laboratory in Ames Lab, research is under 

way for customizing tracing routines of the PICL on nCUBE 2 to further reduce 

instrumentation perturbation effects. 

ParaGraph 

ParaGraph [20] is a software tool that provides a detailed, dynamic, graphi­

cal animation of the behavior of message-passing parallel programs and graphical 

summaries of their performance. 

ParaGraph displays the behavior and performance of real parallel programs run­

ning on real parallel computers to solve real problems. In effect, ParaGraph provides 

a visual replay of the events that actually occurred when a parallel program was run 

on a parallel machine. 

To date, ParaGraph has been used only for post-processing trace files created 

during execution and saved for later study. But its design does not rule out the 

possibility that the data could arrive at the graphical workstation as the program 

executes. 

However, there are major impediments to genuine real-time performance visu­

alization. With the current generation of distributed-memory parallel architectures, 

it is difficult to extract performance data from the processors and send it to the 

outside world during execution without significantly perturbing the program being 

monitored. Also, the network bandwidth between the processors and the workstation 

and the drawing speed of the workstation are usually inadequate to handle the very 

high data-transmission rates that a real time display requires. Finally, humans would 



www.manaraa.com

27 

be hard pressed to digest a detailed graphical depiction unfolding in real time. One 

of ParaGraph's strengths is that it lets you replay the same execution trace data 

repeatedly. 

ParaGraph adopts a dynamic approach whose conceptual basis is an algorithm 

animation. We see a trace file as a script to be played out, visually reenacting the 

original live action to provide insight into a program's dynamic behavior. 

Distinguished features of ParaGraph are: 

• The number of displays it provides. It is important to provide multiple 

views to users. ParaGraph provides a substantially greater variety of perspec­

tives than other packages. 

• Its portability among architectures and displays. Many previous pack­

ages for visualizing parallel algorithms have targeted a particular parallel archi­

tecture and/or have been on a proprietary graphical display system. ParaGraph 

is applicable to any parallel architecture having message passing as its program­

ming paradigm, and ParaGraph itself is based on the X window system, which 

is widely available on workstations from many vendors. 

• The intuitive appeal and aesthetic quality of its displays. 

• Its ease of use. ParaGraph provides an interactive, graphical user interface 

and relies on PICL to provide requisite trace data without requiring the user 

to instrument explicitly the parallel program under study. 

• Its extensibility. ParaGraph provides a mechanism for users to add new 

displays of their own design to facilitate incorporating special-purpose displays. 



www.manaraa.com

28 

CHAPTER 4. PERFORMANCE METRICS 

During the execution of a parallel program, multiple asynchronous processes 

interact and make internal state transitions as time progresses. Parallel program 

analysis, therefore, requires that performance metrics should at least reflect three 

dimensional spaces as shown n Figure 4.1 — process interactions^ process states, and 

time. 

Interactions 

Figure 4.1: Three Dimensional Spaces for Performance Metrics 

Other types of metrics that can be calculated from trace event information in­

clude counts, and ratios. A ratio may be a time rate, a density, a percent, or other 

relative comparison. Appropriate metrics for multicomputers include [41]: 

• Processor state describes the current activity of a processor. 

• Operation count or Work is the number of operations (calculations) per­

formed locally by one or more tasks running on a processor. 

• Computation time is the time spent being busy doing work, exclusive of idle 

time and communication time. 



www.manaraa.com

29 

Computational power is the average rate at which work is done, exclusive 

of any overhead. 

Execution time is the total amount of time a processor has spent executing 

a program, including computation and communication time. 

Message volume is the number or size of messages pending (i.e. sent but not 

yet received) by a processor. 

Communication time is the time spent by a processor in message passing, 

including overhead and transmit time. 

Communication flow is the average rate at which bytes are processed and 

transmitted at a processor. 

Execution rate is the average rate at which work is done over the duration of 

a time interval, including any overhead. 

Percent computation time is the percent of the total time that is spent 

doing work. 

Percent communication time is the percent of the total time that is spent 

doing message passing. 

Communication Overhead is a measure of the time spent communicating 

per unit of time spent doing work. 

Concurrency 

Utilization 



www.manaraa.com

30 

CHAPTER 5. OBJECT-ORIENTED PROGRAMMING 

This chapter introduces the basic concepts and terminology of object-oriented 

programming. Advantages and disadvantages of an object-oriented programming and 

concurreny issues are described as well. " 

Basic Concepts 

Object-oriented design ensures encapsulation, inheritance, and polymorphism. 

It also supports development of reusable software. In object-oriented design, major 

building blocks for program construction are objects. An object is an encapsulated set 

of state data, together with a set of related functions (operations) that manipulate 

the shared state data. The key idea is that a collection of data and functions that 

normally operated on the data are closely related and should be treated as a single 

entity rather than as separate things [35]. In Smalltalk, functions defined by an object 

are often referred to as methods, and invoking a method is called sending a message 

to an object. In C-f-f, methods are referred to as member functions and invoking 

a method is performed using a procedure-call interface. In general, the data of an 

object are hidden from all the other objects. Encapsulation is ensured by allowing 

the access and modification of the state data to be accomplished only through a set 

of publically accessible functions defined for the object. Public functions define an 



www.manaraa.com

31 

State Data 

Methods 

Protected 

Private 

^ Public methods 

(external interfaces) 

Figure 5.1: An Object Module 

object's external interface, while private and protected functions define an object's 

behaviour (see Figure 5.1) 

Objects provide a coarser granularity for program decomposition than is provided 

by using conventional functional decomposition. Writing programs in terms of objects 

and their interactions is more natural than to rely on artificially invented functions. 

Software designs in both functional decomposition and data decomposition usually 

lead programmers to come up with the solution structure radically different from the 

problem domains. 

Many similar objects can be described by the same general description. The 

description of an object is called a class and it is basically an extension of abstract 

data type for similar objects defined through a generalization process. It is used as a 

template from which objects may be created. Every object is an instance of a class. 

Objects created from the same class share the structure and behaviour of the class. 

All instances of a class have the same number and types of state data, called instance 



www.manaraa.com

32 

variables. But the values of those instance variables are different among them. Some 

of an object's private variables are shared by all other instances of its class. These 

variables are called class variables and are part of a class. In C+4-, class variables 

are named as static class members. Cleiss variables are useful when there is a need 

to maintain coherent information that must be available to all objects of its class. 

Classes can form a hierarchy via inheritance. Inheritance is a powerful mecha­

nism that facilitates code reusability and supports an incremental modification which 

is desirable is the software systems. A class derived from one or more parent classes 

or superclasses as a subclass inherits the attributes and behavioral characteristics of 

its parents. A subclass can modify the attributes and behavior of its parent class in 

one of the following ways — adding new instance variables, adding new methods not 

defined by the parent cIms, overriding the existing methods defined by the parent 

class, or adding new class variables. When a class has more than one parent classes, it 

uses multiple inheritance, otherwise it uses single inheritance. The potential for code 

sharing is greater in multiple inheritance, but the possibility of conflicts between 

multiple parent classes increases the complexity. There is also a derivation of the 

inheritance, called delegation. Delegation is a mechanism that permits an instance 

object to delegate responsibility for servicing an invocation request to another object. 

Unlike inheritance, delegation is class independent. Indivisual instance objects of the 

same class may have different objects servicing requests they are unable to service. 

Another important feature of object-oriented languages is polymorphism. Poly­

morphism allows various types of objects to respond to the same message in different 

ways, without requiring the program to know the exact type of the object. Polymor­

phism provides a mechanism for building a general and extensible code. In C+4-, 



www.manaraa.com

33 

polymorphism is supported by virtual member functions. 

A programming language is defined as being object-based if it supports objects 

as a language feature and object-oriented if it also supports the concept of inheri­

tance and polymorphism [7]. C-f+ and Smalltalk are classified as object-oriented 

languages, whereas Ada and Modula-2 belong to object-based languages. Object-

oriented languages can be considered either revolutionary or evolutionary, depending 

on the degree to which access to conventional programming techniques is retained 

[8]. 

Pure object-oriented languages such as Smalltalk-80 represent the rev­
olutionary approach and provide the advantage of conceptual simplicity. 
The programmer works in a computational environment that contains 
only objects, so the break with the past is clean and crisp. 

. . .  a n  e v o l u t i o n a r y  a p p r o a c h  -  a d d i n g  o b j e c t - o r i e n t e d  c o n c e p t s  o n  
top of conventional languages. A number of these hybrid languages exist 
today, including Objective-C, OOPC, Flavors, and Clascal. These lan­
guages do not offer the conceptual consistency of Smalltalk-80, but they 
do have one considerable advantage: They can often be used for produc­
tion programming, where pure languages like Smalltalk are usually un­
acceptable. ... Since they retain conventional languages as a substrate, 
efficiency can be outstanding. 

Pros and Cons 

Object-oriented languages have many advantages over traditional procedure-

oriented languages. These advantages include: 

• Increased reliability and decoupling of specification from implementation through 

information-hiding and data abstraction 



www.manaraa.com

34 

Reusability 

Maintainability 

Rapid-prototyping 

Extanalblllty 

Conceptual Conalatency 

Figure 5.2: Benefits of the Object-Oriented Programming 

• Flexibility of adding new classes of objects without having to modify existing 

code through dynamic binding 

• Code reusability through inheritance combined with dynamic binding 

• Reduced overall code and increased productivity 

Object-oriented programming also provides major advantages in the production 

and maintenance of software: shorter development times, a high degree of code shar­

ing, and malleability [35]. Moreover, a more natural representation of the real-world 

model can be realized in the code by using object-oriented programming. The benefits 

of an object-oriented programming are summarized in Figure 5.2. 

On the other side of the coin, runtime cost of the dynamic binding mechanism 

is thought to be a major disadvantage by some. In general, however, object-oriented 



www.manaraa.com

35 

programming is considered to be a promising technology for constructing complex 

software systems for present and in the future. 

Software ICs 

Cox [9] introduced a concept of software ICs (integrated circuits). Software IC 

is a reusable software component and its concept came from a combination of as­

pects of subroutine libraries and Unix filters. The hardware IC chips revolutionalize 

the design of hardware systems due to their massive reusabilility and encapsulated 

operating functions. IC chips provide well-defined services on request without re­

quiring to know the internal methods or data. When changes are necessary, modified 

IC chips can be used while inheriting most of the implementation without affecting 

interfaces or ICs not affected by the change. The software ICs are similar to the 

hardware counterparts. Object-oriented programming enables and encourages the 

use of software ICs. Through encapsulation, inheritance and dynamic binding fea­

tures of object-oriented programming, the software IC concept is realizable and users 

can build a software system which satisfies evolving requirements. 

Sciflware 
IC 

Figure 5.3: Software ICs 



www.manaraa.com

36 

Concurrency 

Concurrency involves having several, simulateous threads of computation within 

a system. The difference threads may communicate with each other using message 

passing or shared memory. Advantages of concurrent modeling includes: 

• Improved modelling capabilities. In the real world, actions take place concur­

rently, realizing such interactions is more natural in a concurrent language. 

• Concurrency allows the user interface, I/O processings, and local computation 

to take place independently. 

Concurrency arises naturally from object-oriented design, rather than explicit 

consideration from the beginning. This happens because the analysis is done in 

terms of autonomous objects perhaps exchanging messages, and such objects are 

naturally concurrent. Autonomy implies concurrency. Consequently, one can design 

object systems on a uniprocessor and later convert it to multiprocessors object system 

with little or no change. But this does not guarantee a good parallel object-oriented 

design. 



www.manaraa.com

37 

CHAPTER 6. DESIGN GOALS 

This chapter describes the design goals of the proposed performance visualization 

environment and addresses the implementation contraints. As an effort to generate a 

general purpose and as yet efficient performance visualization tool, we combined the 

ideas of previous visualization environments described in Chapter 3. However, several 

of the ideas described in this paper are mainly based on results from the ParaGraph 

[20] and the HyperView [32]. We have also based our implementation on ParaGraph 

2.0. Although most views of our current prototype object-oriented ParaGraph are 

borrowed from ParaGraph, the views and functions of ParaGraph are just a subset 

of those of ours. The main design goals are as follows: 

• Simplicity: The overall program design should be clean and simple. This 

implies that each component object should be simple to perform only one 

well-defined major function. The interaction between objects should be ac­

complished purely by sending and replying messages, not by depending on the 

internal data structure of objects. This property provides an extra benefit of 

ecisy extension to actual parallelism. 

• Ease of Use: Users of a visualization tool must feel comfortable in operating 

the tool. The tool should provide a consistent and unambiguous user interface 

which is highly interactive, mouse-, and menu-driven. If color coding scheme is 



www.manaraa.com

38 

used, then it must be consistent throughout the entire views so that users may 

not be confused. 

Extensibility: A visualization tool should provide a flexible mechanism for 

users to add new views of their own design to facilitate incorporating special-

purpose views, (Even though the ParaGraph supports this mechanism, it is 

primitive and awkward in that users may end up with proliferation of Para­

Graphs which differ only one view between them.) If a visualization tool sup­

ports only a predetermined set of performance aspects and a specific set of trace 

record formats, its functional lifetime will be limited. By defining standard in­

terfaces for each component to encourage modular design, the visualization tool 

can be quite flexible to accommodate changing users' requirements. Extensi­

bility is also desirable in that system evolution can be accomplished with little 

effort. 

Reusability: Isolating the semantics of performance view from its analysis 

module would greatly increase the possibility of module reuse. In this case, 

view modules can be reused. This idea can also be found in [39]. The module 

resue can also be obtained by isolating the semantics of trace data from its 

analysis module. In this case, analysis and/or reduction modules can be reused. 

The COOPG must be designed to be useful in analyzing the performance of 

different distributed memory concurrent systems with disparate trace record 

formats with little effort. 

Efficiency: The main purpose of using parallel computers is to reduce compu­

tation time as much as possible. It would be absurd if the analysis tool for the 



www.manaraa.com

39 

parallel programs becomes a bottleneck in the production cycle. Therefore ef­

ficiency should be considered throughout the design and implementation phase 

of the performance visualization environment. Poorly designed program with 

unproper abstraction may cause unacceptable efficiencies. Care should should 

be taken for a visualization environment to induce as little overhead as possible, 

preferably none at all. 

• Portability: A visualization tool should be capable of running on diverse 

platform of workstations. Since the object-oriented performance visualization 

environment is written in C-t-f- with the graphical displays based on X window 

library, it is highly portable. Although the current prototype environment 

does not support graphics system other than the X window system, the design 

principle does not preclude the possibility of implementing the tool on the other 

graphics systems to gain better response time. This is possible because all the 

graphics related functions are encapsulated from the rest of the tool. Therefore 

as far as the external interfaces are consistent, X window graphics functions can 

be safely replaced with a customized graphics functions. The other alternative 

is to develop an abstract window system superclass so that all the other window 

systems can be derived from that superclass. 

In designing the performance visualization environment, the following require­

ments and restrictions must also be considered. 

• Drawing of views must be synchronized to reflect the relationship among views 

representing various aspects of performance. Each snapshot of the display must 

deliver the current behaviour of the program seen by different angles of analysis. 



www.manaraa.com

40 

Trace records must be processed sequentially. Except some summary statistics 

views, most of the views require time lined-anaysis. 

In concurrent implementation, unnecessary synchronization overhead must be 

avoided. Granularity of concurrency must be carefully selected from the outset 

of the design process. 



www.manaraa.com

41 

CHAPTER 7. THE VISUALIZATION ENVIRONMENT 

We have designed and implemented a prototype performance visualization en­

vironment, called Concurrent Object-Oriented ParaGraph (COOPG), for the dis­

tributed memory concurrent memory computers with the design goals in the previous 

chapter in mind. The COOPG is an evolutionary extension of our first generation per­

formance visualization environment, Object-Oriented ParaGraph (OOPG) [25], for 

better efficiency and extensibility. This chapter describes the design and implementa­

tion of both OOPG and COOPG which are trace-driven, post-mortem performance 

visualization environments. 

The Object Oriented ParaGraph (OOPG) 

The Object-Oriented ParaGraph (OOPG) was a stepping-stone implementation 

for our ongoing research work directed toward developing concurrent object-oriented 

ParaGraph. The OOPG consists of five major components as shown in Figure 7.1 — 

Trace Manager, Filter Manager, Controller, Filters and Views. 

Each component in Figure 7.1 is implemented as a self-contained and autonomous 

object which accomplishes a well-defined function with few external dependencies. 

Trace Manager, Filter Manager, and Controller compose a backbone architecture of 

the OOPG. Filters and Views are components which can be freely plugged into the 



www.manaraa.com

42 

Trace Manager 
Scanner 
Constructor 

Controller 

Trace Files 

Filter Manager 

Scroll Filters Filters Unscroll 
Views Views 

Figure 7.1: Infrastructure of the Object-Oriented ParaGraph 



www.manaraa.com

43 

backbone architecture if necessary. Because Filters and Views are treated like inte­

grated circuit chips which can be plugged into diverse Program Circuit Boards, they 

are referred to Software-ICs in Cox's [9] terminology. The overall organization of the 

OOPG thus makes it easy for users to extend it for their own specific performance 

perspectives with little programming effort. In this section, we will describe each 

component in turn. 

Trace Manager 

Trace Manager maintains a database of tracefiles and provides a graphical in­

terface to the database so that users can select tracefiles with ease, as illustrated in 

Figure 7.2. 

— b i r a e t o r y  c o n t a n t *  

iliiuiiiiiiiiiiiiiijllllHIIIIIIIIII 
chol.trf.Z 
patch.awkz 
sort.trf.Z i/rwer/Dttno 
trace 19k. 1G 
trace27G.4.Z 
trace. me.Z 
trans pose.trf.Z 

Figure 7.2: Graphical Interface for Tracefiles 

It can handle both ASCII tracefiles and compressed binary tracefiles. Com­

pressed binary files are uncompressed on-the-fly at run time. The Trace Manager 

also provides a portable mechanism for passing trace records to a set of filters. To be 



www.manaraa.com

44 

extensible and reusable across disparate sets of trace record types, the Trace Man­

ager should be flexible. Instead of developing portable trace record formats, which is 

very unlikely, we decided to supply user definable mapping facilities, called scanners. 

Through scanners, disparate record formats can be mapped to our standard trace 

record formats at run time without affecting other components. 

In the prototype implementation of the OOPG, we used trace record formats of 

the PICL [20] as our standard. In OOPG, each trace record should be associated 

with at least one of the trace record classes. Figure 7.3 shows the hierarchy of trace 

record classes. 

Trace 

m 

]W 

ComTrace UtiITrace TaskTrace BlockTrace 

Figure 7.3: Hierarchy of Trace Record Classes 

At the root of the hierarchy is a Trace class. Four other classes are derived from 

the Trace class after investigating how each of PICL's trace records is consumed in 

ParaGraph. Other classes can be easily derived from the extant hierarchy whenever 

necessary. Below are the specifications of Trace class and ComTrace class. 

class Trace { 

protected: 

int type ; // Trace Type 



www.manaraa.com

45 

int sec; // Timestamp 

int microSec; // Timastamp 

int node; // Current Node 

public: 

// Scanner Pointer 

friend Trace «defaultScan(char line[]); 

}; 

class ComTrace : public Trace { 

protected: 

int sdNode; // Source or Destination node 

int msgType; // Message Type 

int nsgLength; // Message Length 

public: 

// Scanner Pointer 

friend Trace *comScan(char line[]); 
};  

In the prototype implementation of our OOPG, we used a set of trace record 

types defined in PICL. Currently twenty three trace record types are defined in PICL. 

In OOPG, each trace record should be mapped to at least one of trace record classes. 

Figure 7.3 shows a hierarchy of trace record classes. At the root of the hierarchy is 

a Trace class. Four other classes are derived from the Trace class after investigating 

how each of PICL's trace records is consumed in ParaGraph. Other classes defining 

different trace record formats can be easily derived from the extant hierarchy. Below 

are the specifications of Trace class and ComTrace class. 

Associated with each trace record class is a scanner which instantiates the class 

members from a given trace record. Scanners are user definable functions. The 

OOPG provides default stub functions for scanners using standard trace formats. 

Users need to modify only the scanners when disparate trace formats are required. 

Scanners should be registered before use through a method defined for the Trace 



www.manaraa.com

46 

Manager as follow: 

TRM.registerTracetypeCRECV, comScan); 

where TRM is a Trace Manager, RECV is a trace record type defined in PICL, 

and comScan is a scanner to be associated with RECV. The Trace Manager main­

tains a table of trace record types and corresponding scanners. For a given trace 

record type, it is allowed to register more than one scanners. For example, PICL 

allows BLOCK-BEGIN and BLOCK-END record types to be used for user's specific 

purposes. While ParaGraph uses those types for drawing t^k-oriented views, OOPG 

uses them for both task-oriented and speed-related views. Once scanners are regis­

tered, Trace Manager invokes appropriate scanner (or scanners) based on the trace 

type of a record and delivers created trace record objects to a set of filters through a 

Filter Manager. The operation of the Trace Manager is controlled via the Controller. 

Filter Manager 

Filter Manager maintains a list of filters and has a responsibility of requesting 

trace record objects to the Trace Manager and broadcasting them to a set of filters 

based on the operation selected by a user. Filters either process or discard the trace 

record objects. Filter Manager maintains two sets of filters depending on the scrolling 

capability of the views bounded to the filters. This division is simply to facilitate 

the control of the activation sequence for filters in a uniprocessor environment while 

allowing users to add their own filters with ease. Filters with scrolling views are 

activated before those with unscrolling views. 



www.manaraa.com

47 

Controller 

Users can interactively operate the OOPG through the Controller using mouse 

and keyboard. The Controller provides a hierarchy of menu systems as shown in 

Figure 7.16 and Figure 7.17. We developed an experimental class library (see Fig­

ure 7.8), called libPG.a, to facilitate the creation of windows, buttons, menus, me-

nuitems, panels on top of XI1 window system. For a fast prototype implementation, 

we borrowed menus from the ParaGraph. Since, however, each menu is constructed 

in an object-oriented design, creation of menus is more flexible and easier in OOPG. 

Menu systems with elegant and fancy look can be easily built separately from the 

rest of the OOPG components. This becomes possible because the menu system does 

not recognize the semantics of the menu items it displays. 

Associated with each menu item, whether it be a button item or a text entry item, 

is an event handler which processes events and, if necessary, activates corresponding 

callback routines which are known to the Controller. Interpretation of those events is 

then delegated to the Controller. Figure 7.4 illustrates the event handling mechanism 

incorporated into the window objects in the class hierarchy of Figure 7.8. 

Filters 

Filters are self-contained objects which are responsible for data analysis, trans­

formation, reduction and data presentation through views. Since filters are generally 

independent of each other, they can be freely added and/or removed without affecting 

the operations of others. 

Each filter has a view displaying a particular performance aspect. A view is 

bounded to a filter through a registration method defined for a filter class and vice 



www.manaraa.com

48 

X Event Queue 

structure 

Window Window 

Figure 7.4: Event Handling for Window Objects 



www.manaraa.com

49 

versa. The reason a filter should be registered to a view is that the view could be an 

active agent interacting with users and, if necessary, controlling the behavior of the 

filters they are bounded to. All filters should also be registered to the Filter Manager 

before use. Aside from the scrolling capability of the bounded views, filters are 

further classified into two groups: transient and permanent filters. Transient filters 

are normally simple and memoryless in that their operation is dependent purely on 

the current event like Figure 7.7 (a). However, permanent filters must keep track 

of previous event sequences for rather a complex analysis like Figure 7.7 (b). For 

reasons of performance, transient filters accept trace record objects only when the 

bounded views are displayed on the screen. 

To be extremely general, filters must be totally independent of each other. How­

ever, an ultimate independency may cause an unacceptable delay because a lot of 

works might be duplicated among filters to obtain the same information. As a so­

lution to this problem, we decide to create a hierarchy of filter classes, as shown 

in Figure 7.5, so that information sharing among filters can be performed naturally 

without causing delay by forcing filters to be derived from the extant hierarchy. 

Filter 

GlobalFUter 

Computer TaskFilter 

Figure 7.5: Class Hierarchy for Filters 



www.manaraa.com

50 

Immediate subclasses of the GlobalFilter in fact extract only relevant information 

to their classes from trace record objects. The extracted information then becomes 

syntactically independent from even the standard trace formats. For example, Com-

Filter object generates information such as message volumes per node, queue lengths 

per link, message counts and etc. Since analysis filters derived from the ComFilter 

class only see these information, it is possible to develop independent reusable filters 

for performance aspects under consideration. 

Views — -

A view is a window on the display which is responsible for drawing a particular 

aspect of performance. Originally, a view itself is not semantically tightly coupled 

with the displaying performance aspect. This means that each view is independent of 

the rest of the OOPG components, and only provides a set of configuration parameters 

and methods. We call this view as an abstract or template view. Configuration 

parameters are used to define a new view instance {concrete view), while the view 

methods define permissible operations to manipulate the view. 

An abstract view become a concrete view after configuration parameters are 

Msigned through a constructor. A concrete view is then tightly coupled with the 

displaying performance eispect. Concrete views can be created either directly from 

a corresponding abstract view (as shown in Figure 7.6), or indirectly from derived 

classes of an abstract class. This mechanism facilitates the creation of different views 

with similar characteristics and behavior from the same abstract views. Once created, 

concrete views should be registered to filters. 

Figure 7.7 (a) is an example of a concrete view created from an abstract view, 



www.manaraa.com

51 

Figure 7.6: Creation of a Concrete View from an Abstract View 

Communlcmdon Mrnwr • 

(a) AnimView instance (b) Meter View instances 

Figure 7.7; Concrete View Instances 



www.manaraa.com

52 

called AnimView, to animate the message sending and receiving activities among 

processors. A C++ class definition for the configuration parameters and methods for 

the AnimView is: 

class AnimView : public View { 

gc_t atateNode[MAX_STATE]; 

char *legendCMAX_STATE]; 

public: 

void setState(int state, gc_t gc, char «label); 

void chgStateCint node,in* state); 

void connect(int from, int to); 

void disconnect(int from, int to); 

}; 

Figure 7.7 (b) shows two different views derived indirectly from a common ab­

stract view, called MeterView. 

In our experimental class library, libPG.a, a set of abstract view classes are also 

defined together with the classes described earlier in Controller section. We examined 

many extant visualization tools to find out useful abstract classes to further promote 

the creation of new concrete views. A subset of the class hierarchy defined in the 

libPG.a is shown in Figure 7.8. 

The Concurrent Object-Oriented ParaGraph (COOPG) 

The implementation of the Concurrent Object-Oriented ParaGraph (COOPG) is 

evolved from the architecture of the Object-Oriented ParaGraph (OOPG). The main 

focuses of the COOPG over the OOPG is to achieve better efficiency, extensibility 

and reusability. 



www.manaraa.com

53 

PGWindow 

Menu Menultem PanelWin Button Input 

Panel_W_Bttns Panel_W Inputs 

PanelWBttnsInputs 

View 

UnscrollView ScrollView 

KiviatView MeterView AnimView Vertical Horizontal 

UtilMeter CommMeter Gantt Count Spacetime 

Figure 7.8: Class Hierarchy in libPG.a 



www.manaraa.com

54 

Concurrency Models 

As illustrated in Figure 7.9, the mapping of objects to processes can be realized 

in several ways. At one extreme, designers can assign one object per process. In this 

case, each object is an active object with its own computation and communication 

capabilities with other active objects. This, framework provides a maximum concur­

rency and has an advantage of conceptual cleanness because the logical boundary 

and the physical boundary of an object does well coincide. However, it may suffer 

from a poor efficiency unless active objects_are relatively independent because of the 

heavy synchronization overhead. At the other extreme, all objects in the system can 

be assigned to one process. In this framework, all the objects are treated as passive 

objects, and coordination of the objects are handled by a super agent. 

In reality, most system fall in between, as collections of relatively coarse-grained 

processes, each housing a relatively large number of passive objects. The resulting 

architecture may be designed by clustering objects within processes. In this frame­

work, each process has the same overall structure and must provide explicit interfaces 

allowing communication among objects, as well as mechanisms (especially proxies) 

that ship remote requests to other clusters [5]. Clustering can be done by considering 

performance (e.g. clustering objects with shared resources and clustering objects that 

heavily intercommunicate) or by emphasizing semantical closeness (e.g. subsystems). 

In the implementation of our COOPG, a variation of the last scheme (see Fig­

ure 7.10) is adopted to compromise efficiency and conceptual cleanness. After in­

vestigating the operations and relationship of each object in the OOPG, objects are 

grouped together to form clusters btised on their semantical closeness while consid­

ering the efficiency. However, all objects in each cluster are not passive ones. Each 



www.manaraa.com

55 

One object per process {Active object) 

All objects to one process {Passive objects) 

Clustering objects within processes: 
Baned on performance or aemantical rAoneneas (smbsyHf.emH) 

Figure 7.9: Concurrency Models 

Figure 7.10: Concurrency Model in the COOPG 



www.manaraa.com

56 

cluster contains a set of active objects and passive objects. An active objects are 

implemented via threads. 

An Active Object: Task 

A thread, called a task, has its own locus of control, and a computation to 

perform, and its own private data. A task can communicate by explicit sharing of 

data, or by messages. Basically, a task is an abstraction of an activity. Facilities for 

multi-thread computation can be provided by a language itself like Concurrent-Pascal 

and Mesa, or special run-time support systems and library functions can be used to 

augment the languages without those facilities as in [53, 33]. 

In order to provide the multi-thread facilities, as a library implementation, to the 

C-H-K language, we developed a C+4- wrapper around the POSIX thread packages.^ 

The cleiss specification of the base class Task is defined as: 

^ POSIX is an proposed IEEE standard for portable operating systems for open 
systems. Especially, POSIX 1003.4a is a threads extension, called pthreads, which 
describes the interface for light-weight threads. Light-weight threads, sometimes 
called tasks, are independent threads of control within a heavy-weight process that 
share global address spaces. The cost of context switches between threads is cheaper 
than the cost of context switches between processes because the context of a thread 
is smaller than that of a process. The Pthread standard provides a uniform base 
for multiprocessor shared-memory applications, real-time system environments, and 
a cheap model for multi-threaded programs on a single processor. 

Based on the Pthreads standard, a library implementation of Pthreads package 
on the Sun SPARC station has been developed at Florida State University [33]. 
The main purpose of Pthreads package was to implement Ada tasks, but it can 
express parallelism within applications at the level of programming languages as 
well. The main features of the Pthreads includes task management (creation, join 
and destroy), preemptability, fast context switches, small critical sections, support 
of synchronization and signal handling, and few operating system calls. A language-
independent interface is also provided. 



www.manaraa.com

57 

class Task { 

public : 

virtual 

pthread.t 

void 

void 

void 

static 

virtual 

-TaskO ; 

Pthread.getidO const { return pthreadlD; } 

Pthread.yield (any_t arg); 

Pthread.exit (any_t status); 

Pthread.detach (); 

int Pthread_join (pthread.t thread, any_t » status); 

void BodyO = 0; 

}; 

protected: 

TaskO 

static 

private : 

int 

pthread.t 

{ Pthread.createO ; } 

void Execute(Task *); 

Pthread.create (); 

pthreadlD; 

Since the constructor of the class Task is a protected member, users cannot create 

a thread directly. Instead, all classes which provides the abstraction of threads must 

be derived from the Task base class. 

class ActiveObject : public Taskl { ... }; 

The base class provides the definitions of the methods that must at least be 

provided to the deriving classes. 

The Body is a pure virtual function which must be defined by the derived class 

and it represents the controlling code for each object, i.e. the scope within which the 

controlling thread will execute. 



www.manaraa.com

58 

A task can be in one of the following states: 

Running The task is currently executing instructions. 

Idle The task is waiting for some condition. Currently, the task is not executing, 

but it can be transferred to Running state if wait-for condition occurs. 

Terminated The task has completed its computation and cannot be resumed. If 

detached, any memory associated with it may be recovered once the thread 

terminates. 

Initialization The header file Task.h includes pthreads.h which defines the 

Pthreads interface, and contains the definition of the class Task. All modules using 

threads must include this file. ::pthreadJnit initialize the Pthreads routines. A 

program using threads must explicitly call ::pthreadJnit before using any of the other 

Pthreads functions. 

Threads Control When a C++ program starts, it initiates a single thread of 

control, the main thread executing main function. New threads are created at the 

point where instances of the derived classes of the Task class are defined. Once new 

threads are created, they continue to execute in parallel with other threads. 

A thread terminates when it returns from the Body it was executing. Unless 

Pthread-exit is explicitly called, the terminated thread is in limbo state. 

Pthread-join forces the calling thread to wait for the specified thread to termi­

nate. The return value of the specified thread is provided in status. 

A calling thread is detached by Pthread-detach. This operation indicates that 

the calling thread will never be joined. Once a thread is detached, any memory 



www.manaraa.com

59 

associated with it may be recovered once the thread terminates. 

Pthreadjyield causes the current thread to suspend execution and requeue itself 

at the tail of the its priority level in the ready queue. The argument is always NULL. 

This function is a hint to the scheduler, suggesting that this would be a convenient 

point to schedule another thread to run on the current processor. 

Pthread-getID returns the thread identifier of the calling thread. The thread 

identifier uniquely identifies the thread. 

Synchronization Mutual exclusion and synchronization primitives, called mu-

texes and condition variables, are not encapsulated in the Task class definition. User 

can directly access those primitives supported by the Pthreads library using the 

notation which allows access to global scope identifiers. 

mutexes are used whenever necessary to prevent corruption of shared data by 

enforcing mutually exclusive access to them. Condition variables is a boolean function 

of the shared data that the mutex protects. They are used when a thread need to 

wait for some condition to occur. There are two extremes in using mutexes: one for 

protecting all shared data with one mutex, and the other for protecting every byte 

of the shared data with that many mutexes. Fine granularity normally increases 

the degree of possible parallelism, but it can lead to unacceptable overhead due to 

excessive locking and unlocking of mutexes. 

Mutexes can be initialized by ::pthread^mutexJnit function and destroyed by 

::pthread.Tnutex-destroy function. Mutexes shared across processes are not currently 

supported by the Pthreads library. 

The r.pthreadjmutexJock attempts to lock a mutex and blocks until it succeeds. 



www.manaraa.com

60 

A mutex can be locked by only one thread at a time. Any subsequent attempt to lock 

the same mutex by other threads will make them block until the mutex is unlocked. 

The ::pthread.mutex-trylock is the same as the ::pthread.mutexJock except that when 

locking is failed, it returns -1 and set the errno to EBUSY immediately rather than 

blocking the calling thread. If locking succeeds, it returns 0. A locked mutex can be 

unlocked by ::pthreadjmutex-unlock. Then a thread at the head of the waiting queue 

may resume execution and lock the mutex. 

A thread issues ::pthread-cond.8ignal when a condition associated with the con­

dition variable becomes true so that a thread at the head of the wait queue may be 

woke up. ::pthread.co'hd.broadcast is the same as the ::pthread.cond.signal except 

that it wakes up all the waiting threads, not just one. When no threads are currently 

waiting, then nothing happens. This means that signal is memoryless. 

The pthread-cond-wait suspend the current thread on the condition variable 

associated with a mutex until signaled by either of the above signaling functions. 

Since there is no guarantee that the condition is true when a return from a conditional 

wait, a global variable should be checked to determine the condition is true. A mutex 

must be locked before calling a conditional wait primitive. When signaled, the thread 

first automatically wakes up and reaquires the mutex, and return from the conditional 

wait. The proper usage of these primitives should be as follows: 

Thread 1: 

::pthread_mutex_lock(&mutex); 

while (!ready) 

: :pthread_coiid_wait(ftcond,ftmutex) ; 

::pthread_mutex_unlock(ftmutex); 



www.manaraa.com

61 

Thread 2: 

: :pthread_inutex_lock(ftmutez) ; 

ready = TRUE; 

: :pthread_nutex_uiilock(ftmutex) ; 

::pthread_cond_signal(ftcond); 

The Task.h header file defines some useful macros to allow users to write more 

concise and error-free programs. 

«define SYNC.VARS(x) \ 

pthread.mutex.t 

pthread.cond.t 

int 

x##Lock: \ 

x##Cond; \ 

x##Ready; 

#define EXTERN.SYNC.VARS(x) \ 

extern pthread_mutex_t 

extern pthread.cond.t 

extern int 

x##Lock; \ 

x##Cond; \ 

x##Ready; 

«define WAIT(x) \ 

pthread_mutex_lock(&x##Lock);\ 

while (!x##Ready)\ 

pthread.cond.vait(ftx##Cond,&x##Lock);\ 

pthread_mutex_unlock(&x##Lock);\ 

x##Ready = 0; 

«define SIGNAL(x) \ 

pthread_mutex_lock(6x««Lock);\ 

x##Ready = 1;\ 

pthread_mutex_unlock(&x««Lock);\ 

pthread_cond_signal(ftx««Cond); 



www.manaraa.com

62 

Software Design 

The Concurrent Object-Oriented ParaGraph (COOPG) consists of three major 

component clusters — Trace cluster, Filter cluster and View cluster. The software ar­

chitecture of the COOPG is shown in Figure 7.11. Clusters are normal heavy-weight 

processes working independently and collectively to construct an extensible and effi­

cient performance visualization environment. In current implementation, communi­

cation among clusters are achieved by either a shared memory or message queues. In 

Figure 7.11 active objects (tasks) are drawn in white ovals, and passive objects are 

shown in white rectangles. Small dark gray circles represent proxies to enable remote 

procedure call semantics between filters and views, and they will be explained in 

detail later. Solid arrows indicate control flows (commands and status information) 

and dashed arrows denote data flows (trace events and graphics requests). 

TYace Cluster The Trace cluster is responsible for maintaining a database of 

tracefiles. It consists of Trace Manager and Writer tasks. Most of the functions and 

features of the Trace Manager in the Object-Oriented ParaGraph are retained in the 

Trace Cluster. Therefore we only describes the differences here. 

In the OOPG, trace events were retrieved from the database of trace files and 

passed to the Filter Manager one at a time on request. But in the COOPG, trace 

events are written to the Double Buffer in the shared memory at full speed by the 

Writer once a trace file name is provided to the Trace Manager. Double buffering 

allows overlapped execution of input processing and internal computations. The 

operation of the Writer is controlled by the Trace Manager. Even if the current 

implementation does not support multiple Writer tasks, the Trace Cluster can be 



www.manaraa.com

63 

E 
U 
S 
T 
E 
R 

Database of 
tracejîles (tracesets) 

CLUSTER 

Writer Trace Manager 

-O o 

Preprocessor 

O-

510 

li 

Double Buffer 

Scanner 

Scroti Filters 

Filter Manager 

Unscroll Filters 

• • ..... •! |[ ] • •! 
WW f « 1 | —— — 4 1 

•  1  ,  —  - - - - - 1  
; ¥ f 1 1 1 1 1 1 

! il::::-
• 1 

Graphics Queue Command Queue 

View Manager 

Dispatcher 

• • • • • • 
Views 

Figure 7.11: Software Architecture of the COOPG 



www.manaraa.com

64 

extended to incorporate multiple Writers to speed up the preprocessing phase of the 

Filter cluster with little effort. 

If multiple Writers are to be employed, the Trace Manager must provide an 

efHcient mechanism to manage a database of trace Ales in which a trace file consists 

of disjoint partitions of trace events. It should also coordinate and schedule Writers 

so that Writers can handle a set of partitions in parallel. To reflect this possible 

extension in implementation, we will use the term traceset to denote a trace file. 

That is, a traceset is a collective terminology representing a trace file which consists 

of one or more partitions of trace events. 

Filter Cluster The Filter cluster processes trace events read from the Double 

Buffer in the shared memory, collects performance related information and generates 

graphics requests to draw the information on the display in various forms. Filter 

Manager, Preprocessor and Scanner tasks are main components of the Filter cluster. 

When we designed the Filter cluster, there were two design alternatives. The 

first alternative was to exploit higher degree of concurrency by making each filter as 

an active object. According to the class hierarchy in Figure 7.5, all the instances of 

the classes in that hierarchy and the instances of filter classes for particular views 

might be implemented as active objects. This scheme is a naive attempt to achieve 

concurrency based on the software architecture of the OOPG in Figure 7.1. It has 

an advantage of conceptual consistency between real-world objects and their physical 

implementations. But the first alternative experienced major performance degrada­

tion due to two main reasons that will be explained below: view synchronization 

requirement and data dependency among filters along the hierarchy in Figure 7.5. 



www.manaraa.com

65 

Filters are in one of the two possible states as shown in Figure 7.12 

ceasing state and running state. 

— prepro 

Preprocessing 
State 

Running 
State 

Figure 7.12: States of a Filter 

In the preprocessing phase, all the trace events in a given traceset is processed 

once to obtain class specific global, performance related information to configure fil­

ters and views. The global information includes the number of processors involved, 

maximums and minimums of some metrics, start and stop times of the instrumenta­

tion, and other information necessary to instantiate data structures needed for par­

ticular filters and views. In the running state, trace events are processed sequentially 

one at a time to analyze the current behavior and to adjust performance metrics, 

and to draw performance views accordingly. Note, however, that all filters cannot 

proceed to process trace events at their own full speed at least in the running phase 

because the pictures drawn in the display must be synchronized at each point in time 

among all the opened views. Otherwise, the snapshot of the entire pictures is totally 

out of synchronization and cannot provide the clues for the relationship among views 

which may be the most valuable information in performance analysis. This makes 



www.manaraa.com

66 

the operation of each filter be synchronized for each trace event, and, as a result, 

incurs a severe performance penalty due to the heavy synchronization overhead. The 

view synchronization point among filters is shown at level 2 in Figure 7.13. Note that 

in the OOPG, a view object is a member of a filter. Thus view synchronization must 

be considered among filters instead of views. 

Note also that while filters in the lower lever classes in the hierarchy are ex­

ecuting, filters in the higher lever classes must wait. This is because the current 

information maintained by the high level filters must be accessed by the lower level 

filters to ensure that all filters see one consistent state at a point in time. Thus 

another synchronization is required for data integrity at level 1 as well as level 2 in 

Figure 7.13. This observation of data dependency resulting from data sharing makes 

it infeasible to implement a plausible pipelining in the execution of filters. 

In order to overcome the problems in the first alternative, we came up with 

a second design alternative which is more efficient while preserving the conceptual 

cleanness. In the second alternative, filters become passive objects with standard 

interfaces for preprocessing, running and configuration. Instead, artificial, functional 

objects, called Preprocessor and Scanner are created to handle the preprocessing 

and running phases of filters respectively as shown in Figure 7.14. Because of the 

sequential processing nature of the performance visualization environment, only single 

instance of the Scanner is created. But our design does not exclude the possibility 

of multiple Preprocessor instances. However, the current prototype implementation 

employs only one Preprocessor. 

The Filter Manager maintains a set of filters and controls the operation of the 

Preprocessor and the Scanner. Like the OOPG, it maintains two sets of filters based 



www.manaraa.com

67 

Global Filter 

V 
L 

Level 1 

0 

Communication 
Filter 

V 
Utilization Filters Communication Filters 

Figure 7.13: Synchronization Points of the Filters 



www.manaraa.com

Running 
suie 

Preprocessing 
State 

Preprocealng 
Slate 

Running 
State 

Preprocessor Scanner 

Prcpracesslng 
State 

Running 
State 

Running 
Stale 

Preprocessing 
Slate 

Figure 7.14: Preprocessor and Scanner Objects 



www.manaraa.com

69 

on their scrolling capability of the views bounded to them. At the beginning of the 

preprocessing phase, the Filter Manager wakes up the Preprocessor. Then the Pre­

processor retrieves trace event one at a time from the Double Buffer in the shared 

memory and send a message to each filter for preprocessing (invoke the rcvPrepro-

cessTrace method) from the higher level filters to lower level filters in turn. At the 

end of the preprocessing phase, preprocess method is called for each filter to wrap 

up preprocessing. After preprocessing is done, the Preprocessor blocks itself until 

signaled by the Filter Manager later on user's request. In the running phase, the 

Scanner is activated by the Filter Manager. The operation of the Scanner is almost 

identical as the Preprocessor except that it invokes the rcvScan Trace method of each 

filter. 

In order to achieve a better efficiency, the functions^ of filters are decoupled 

with operations of the views bounded to each filter. And the view synchronization 

point is shifted from the Filter cluster to the View cluster. Then how each filter send 

graphics requests to the corresponding view to display performance pictures? As a 

solution, we introduced the concept of proxy to handle communications among filters 

and views as shown in Figure 7.15. 

When a filter in the Filter cluster needs to send a message to a remote object 

(view object) in the View cluster, it send a message to a local proxy view object for 

accessing remote object. Proxies are local, passive view objects in the Filter cluster 

environment with the same interfaces (public methods) as the remote view objects. 

Proxies act as local stubs for remote view objects, performing argument packing and 

sending graphics requests via undering communication mechanism. In our prototype 

^Actually, the functions of the filters are executed via Preprocessor and the 
Scanner. 



www.manaraa.com

70 

FILTER CLUSTER VIEW CLUSTER 

filters proxies 

0# 
# 
# 
e 
# 

arguments 
packing 

D# 
#0 

Dispatcher 

O 

stub objects views 

arguments 
unpacking 

e 

Figure 7.15: Proxies 



www.manaraa.com

71 

implementation, the UNIX message queues are used as a communication mechanism 

as seen in Figure 7.11. In the running phase, filters can proceed to process trace events 

and generate graphics requests at full through the Scanner speed while providing a 

synchronization hint to the views in the View cluster. Synchronization hint is a 

predetermined message following the graphics requests of all the filters for each trace 

event. The sum of the graphics requests of all the filters per trace event is called 

a frame. The synchronization hint is necessary to support user's control over the 

behavior of the visualization environment like pause, resume and stepping. Under 

no circumstances, a subset of opened views should be suspended in the middle of 

drawing a frame. 

Like the OOPG, filters are components (Software-ICs) which can be freely plugged 

into or out of the Filter cluster. This becomes possible due to the polymorphism and 

dynamic binding features of the object-oriented programming. As long cis a filter 

is derived from the extant class hierarchy and defines pure virtual functions of the 

super classes, it can be added safely and elegantly to the performance visualization 

environment without affecting any other components. The public member functions 

of the root class Filter is listed below. 

class Filter { 

public: 

FilterO ; 

virtual "FilterO ; 

virtual void rcvPreprocessTrace(Trace *) = 0; 

virtual void rcvScaaiTrace(Trace *) = 0; 

virtual void preprocessO = 0; 

virtual void showPreprocessStatusO = 0; 

virtual int HasViewO ; 



www.manaraa.com

72 

virtual void registerView(P_View *viewp); 

virtual void dravVievO; 

virtual void reset(); 

}; 

View Cluster In our performance visualization environment, all the graphics 

functions are completely separated and isolated physically as well as logically and 

incorporated into the View cluster. This improves the portability and maintainability 

of the performance visualization environment. 

The View cluster handles the user interface and is responsible for displaying 

user requested performance information graphically in an efficient and pleasing way. 

View Manager^ Controller and Dispatcher tasks are active components of the View 

Cluster. 

The user can interactively operate the COOPG through the Controller using a 

mouse and a keyboard. The Controller provides a main Control Panel through which 

the user can select desired views and control the visualization. The Control Panel 

is shown in Figure 7.16. It provides selection buttons for submenus for utilization, 

communication, task and other miscellaneous views. The available submenus are 

shown in Figure 7.17. An option menu for specifying various options and parameters 

is also included in the Control Panel. After selecting the desired views, the user 

presses Start button to begin the visualization for a given traceset. Then visualization 

then proceeds straight through to the end of the traceset unless the user presses 

Pause/Resume or Step buttons for detailed analysis. The Step button enables the 

user to process one trace event at a time in a single-step mode to study a frame or a 

predetermined number of frames. 

The Controller also controls the behaviour of the Trace cluster and the Filter 



www.manaraa.com

73 

Scalable ParaGraph 

Paug#/R#«um# 

Scrctn Dump 
Trmc* Dir 

Figure 7.16: The COOPG Control Panel 

~̂ \ utili •< iji 
Count 

Gantt 
K lv la t  

Summary 
Meter 

Prof 1 le 

(a) Utilization 

—>|Coni{ ' j i| 
TraffIc 

Sp#e*tIm# 
Quvuvz 
MatrIX 

AnIm#tIon 
Hypcrcub* 

Nod* Info 

Count 

Gantt 

Status 

Summary 

L. L 

(b) Communication (c) Task 

Figure 7.17: The Submenus for Views 

Clock 
Trace 

StatIstIcs 
Proc Status 

Cr i t i ca l  Pa th  
Phi 
Info 

KvvBWQQvwvvi/tfwwwvwwvuflvOvnwwwW 

(d) Other 



www.manaraa.com

74 

cluster by sending commands to them through the Command Queue, and/or controls 

the View Manager divecily as shown in Figure 7.11. Status information is delivered to 

the View cluster from the Trace cluster and the Filter cluster through the Command 

Queue as well. 

The View Manager maintains a set of views and configures those views accord­

ingly after preprocessing of a given set of trace events. Like the Filter Manager in 

the Filter Cluster, the View Manager maintains two sets of views depending on the 

scrolling capability of each view. A pair of a filter and a view occupies the same po­

sition in the tables of the Filter Manager and the View Manager, respectively. And 

this positional index is used as a key to link that pair while the running phase is in 

progress. The actual table entries in the View Manager are not real view objects. 

Instead stub objects for each view are maintained in the table. 

The Dispatcher monitors the Graphic Queue to check if there is any pending 

graphics request. Graphics requests in the Graphics Queue are fetched one at a time 

by the Dispatcher and the Dispatcher identifies an intended view by looking at a key 

in a request message. Then a corresponding view stub object is activated to perform 

parameter unpacking and it sends a drawing request message to a real view object 

(see Figure 7.15). 

Detailed explanation of views and their relationship is already described earlier 

in this chapter while describing the OOPG. And like filters in the Filter Cluster, 

views are treated as Software-ICs which can be added/removed without affecting 

any other component. 



www.manaraa.com

75 

Performance Views 

The prototype performance visualization environment classifies views into four 

categories — utilization, communication, task and other miscellaneous views. Utiliza­

tion views are helpful in determining the effectiveness with which the processors are 

used and how evenly the computational load is distributed and balanced across the 

processors. Communication views primarily deal with interprocessor communication. 

They are helpful in determining the frequency, volume, and overall communication 

pattern, and message congestion in the queues. A task^ is a user-defined portion of 

the source code. And task views help in identifying the bottlenecks and locating cor­

responding tasks in the source code. Other views refer to some miscellaneous views 

and the application specific views of users' own design. 

Most of the views supported currently or in the future is borrowed from the 

ParaGraph. Application specific views can be developed independently and added 

later to the View cluster as long as they conform to the standard interface. The 

user can open as many views as possible as long as they can fit into the physical 

display. Even if it is hard to pay attention to many views at the same time, the 

availability of multiple views greatly help the user to understand the behavior of 

parallel programs. The list of views supported presently and in the future are shown 

in Figure 7.18. Readers are strongly recommended to refer to [20] for the detailed 

description of each view borrowed from the ParaGraph. The description of newly 

incorporated views'^ are described below. 

^Do not confuse this task with an active task representing a thread in the concur­
rent processing. 

''Newly designed and incorporated views are marked with an asterisk (*). 



www.manaraa.com

76 

Count 

Gross Utilization* 

Gantt 

Kiviat 

Summary 

Meter 

Concurrency Profile 

Communication 

Traffic 

Spacetlme 

Message Queues 

Matrix 

Meter 

Animation 

Hypercube 

Machine Visuaiizer* 

Node Statistics 

Tasic 

Count 

Gantt 

Status 

Summary 

others 
Clock 
Trace 
Statistical Summary 

Processor Status 

Critical Path 

Phase Portrait 

Speed Views* 

Average Speed View* 

Figure 7.18: Performance Views in the COOPG 



www.manaraa.com

77 

Grott Uflllsttioni; I ' l  I  
GROSS PROCCSSM UriLIZttTIOH 

H 
U 
M 
B 

P 
R 
0 
C 
E 
S 
8 
0 
R 
8 

E 
R 

0 
F 

TImi 417 

Figure 7.19: Gross Utilization 

Gross Utilization The Gross Utilization view shows the percentage of time a 

total number of processors that are currently in each of the three busy/overhead/idle 

states. The number of processors is on the vertical axis and the current time is on 

the horizontal axis. The user can select the desired state by pressing a state selection 

button at the bottom of the view. See Figure 7.19. 

Machine Visualizer The Machine Visualizer shows the edges for commu­

nication between processors on a two-demensional grid and is configurable for the 

topology. It displays the current state of each processor éis well. See Figure 7.20. 

Speed View The Speed View displays the speed of individual processors by 

a horizontal bar chart as a function of time. Processor number is on the vertical 

axis, and time is on the horizontal axis, which scrolls as necessary as the simulation 



www.manaraa.com

78 

Machine Visual!;) - | 

o 
Sender R«c*Iv#r 

Machine Visualizer J 

• 0 
Sender Rtciivir 

i 

(a) 4 X 4 View (b) 2 x 8 View 

Figure 7.20: Machine Visualizer 

proceeds. Color coding is used to denote the speed distribution, and it is displayed as 

a speed legend.. See Figure 7.21. The user can specify the blocks of code to monitor 

the speed of each processor. At the end of the simulation, the user can see the speed 

view normalized to the entire simulation time by pressing Overview button. 

Average Speed View The Average Speed View depicts the average speed of 

all the processors by a horizontal bar chart as a function of time. Speed scale is on 

the vertical axis, and time is on the horizontal axis, which scrolls as necessary as the 

simulation proceeds. The color of each bar indicates the average speed (in MFLOPS) 

of the corresponding processors during each user-defined phase. See Figure 7.22. 



www.manaraa.com

79 

Spaed Vltw i 'L ]  
Sp«td view 

IS 

14 R y 

13 0 ;? 

12 
C s 

11 8 :: 

le 8 f 

9 
0 

7 N 

6 
U P 

5 B ' 

4 E 
R 

2 

1 iîSjïsis — 

e 
Tin: 

OVERVIEW 

417 

M • 
i j l  

0.148587 

0.297173 
H 

|_^M576^ 

I 0^4347 

Unit: MOPS 

Figure 7.21: Speed View 

Averàflé Spaad 
Hverag* Spwd 

Figure 7.22: Average Speed View 



www.manaraa.com

80 

CHAPTER 8. CONCLUSIONS 

This chapter provides a summary and discussions of our work, and concludes 

with the remarks on the future work. 

Summary and Discussions 

The complexity of distributed concurrent computer systems makes a priori per­

formance prediction and evaluation difficult and experimental performance analysis 

crucial, A performance environment including data collection, analysis, and visual­

ization is needed to access the the logical and physical states of parallel programs. 

By translating the performance metrics into pictures, the performance visualization 

environment helps the user to assimilate those information quite an effective way. 

But designing an efficient, general-purpose performance visualization environment 

for parallel programs is equally a complex and difficult task. It is almost impossible 

to satisfy all users' needs and wants. Therefore it is necessary to develop an environ­

ment within which user's requirements can be easily added and/or removed. That is, 

an efficient and extensible environment is strongly desired. Fortunately, an object-

oriented approach, both in design and implementation, provides a mechanism to build 

a simple, flexible, effective, and extensible performance visualization environment. 

In this dissertation, we described the implementation of a general-purpose per­

formance visualization framework, called the Concurrent Object-Oriented ParaGraph 



www.manaraa.com

81 

(COOPG), based on autonomous objects, either active or passive, using an object-

oriented approach. The COOPG is a trace-driven, post-mortem performance visual­

ization environment concentrating on managing and displaying event traces produced 

from parallel programs running on distributed memory concurrent systems. 

Main features of the COOPG is summarized as follows: 

• Based on object-oriented design and programming 

• Conceptual model is well mapped to the physical implementation . 

• Mixed implementation of Cluster/Task Model 

• Use of proxy to handle communications between filters and views 

• Use of double buffering for overlapped execution of reading trace events and 

processing those events 

• Use of two-stage pipelining for overlapping trace event processing and graphics 

display 

• Eaay to maintain and straight-forward to expand to incorporate user's specific 

views 

• Filter-View pairs can be developed independent of other components 

The performance visualization environment described here is an ongoing effort. 

The prototype implementation is as yet completed and further refinement work needs 

to be done, especially on the class hierarchies for filters and views. 

As far as efficiency is concerned, it is yet premature to compare the performance 

of the COOPG with other visualization tools including ParaGraph. However, since 



www.manaraa.com

82 

most of the methods defined in classes are implemented as macros using C++ inline 

functions, we expect little performance penalty. 

The COOPG must not be considered as a reimplementation of the ParaGraph 

in another form. Even if it borrowed menus and views from the ParaGraph for the 

prototype implementation, the underlying mechanism is significantly different. The 

COOPG provides a framework to create extremely flexible and extensible visualiza­

tion tools. Functions of the ParaGraph may safely be considered as a subset of those 

which are provided by the COOPG. 

We learned from the prototype implementation that performance visualization 

is an another promising area which is well suited for an object-oriented design. 

Future Work 

The Concurrent Object-Oriented ParaGraph is an efficient and flexible perfor­

mance visualization environment providing an insight into the development of parallel 

programs. But there are still rooms for further improvement. First, mechanims must 

be developed to visualize massively parallel programs involving a very large number 

of processors efficiently and reasonably on the graphics terminals. Second, a facility 

need to be provided to associate performance pictures with the corresponding code 

segments in the source files. Third, more complex analysis filters must be devised to 

guide the user instead of just providing performance information. Finally, sound as 

well as pictures can be incorporated into the visualization environment. Auralization 

combined with visualization may aid the user in analysing the behavior of parallel 

programs more effectively [15]. 



www.manaraa.com

83 

BIBLIOGRAPHY 

[1] Athas, W., and Seitz, C., "Multicomputers: message-passing concurrent com­
puters," Computer^ August 1988, pp. 9-23. 

[2] Bates, P., "Debugging heterogeneous distributed systems using event-based 
models of behavior," SIGPLAN Notices, 24, 1989, pp. 11-22. 

[3] Bernstein, D., and So, K., "Performance visualization of parallel programs on a 
shared memory multiprocessor system," Proceedings of the 1989 International 
Conference on Parallel Processing, vol. II, August 1989, pp. 1-10. 

[4] Brown, M., "Exploring algorithms using Balsa-II," Computer, May 1988, pp. 
14-36. 

[5] Champeaux, D., Lea, D., and Faure, P., "The process of object-oriented de­
sign," OOPSALA'92, 1992, pp. 45-62. 

[6] Chang, S., Visual languages and visual programming, New York: Plenum 
Press, 1990. 

[7] Chin, R. S., and Chanson, S. T., "Distributed object-based programming 
systems," ACM Computing Surveys, Vol. 23, No. 1, March 1991, pp. 91-123. 

[8] Cox, B. J., "Message/object programming: an evolutionary change in pro­
gramming technology," IEEE Software, Jan. 1984, pp. 50-61. 

[9] Cox, B. J., and Novobilski, A. J., Object-oriented programming an evolutionary 
approach, Second edition, Massachusetts: Addison-Wesley Publishing Com­
pany, Inc. 1991. 

[10] Couch, A. L, "Problems of scale in displaying performance data for loosely 
coupled multiprocessors," Proceedings of the Fourth Conference on Hypercube 
Concurrent Computers and Applications, Monterey, CA, Mar. 1989, pp. 209-
212. 



www.manaraa.com

84 

[11] Couch, A. L, "Categories and context in scalable execution visualization," 
Journal of Parallel and Distributed Computing^ 18, 1993, pp. 195-204. 

[12] Cunningham, S., Craighill, N. K., Fong, M. W., and Brown, J. R., Computer 
graphics using object-oriented programming. New York: John Wiley & Sons, 
Inc. 1992. 

[13] Fowler, R., Leblanc, T., and Mellor-Crummey, J., "An integrated approach 
to parallel program debugging and performance analysis on large-scale multi­
processors," SIGPLAN Notices, 24, 1989, pp. 163-173. 

[14] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D., 
Solving problems on concurrent processors, Englewood Cliffs: Prentice-Hall, 
1988. 

[15] Francioni J. M., and Jackson, J. A., "Breaking the silence: auralization of 
parallel program behavior," Journal of Parallel and Distributed Computing, 
18, 1993, pp. 181-194. 

[16] Geist, G. A., Heath, M. T., Peyton, B. W., and Worley, P. H., "A users' 
guide to PICL: a portable instrumented communication library," Tech. Report 
ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, TN, August 
1990. 

[17] Glenn, R. R., and Pryor, D. V., "Instrumentation for a massively parallel 
MIMD application," Journal of Parallel and Distributed Computing, 12, 1991, 
pp. 223-236. 

[18] Guarna, V., Gannon, D., Jablonowski, D, Malony, A., and Gaur, Y., "Faust: 
an integrated environment for parallel programming," IEEE Software, 6,1989, 
pp. 20-27. 

[19] Haban, D., and Wybranietz, D., "A hybrid monitor for behavior and perfor­
mance analysis of distributed systems," IEEE Trans, on Software Engineering, 
16, 1990, pp. 197-211. 

[20] Heath, M. T., and Etherridge, J. A., "Visualizing the performance of parallel 
programs," IEEE Software, Sep. 1990, pp 29-39. 

[21] Heath, M. T., and Etherridge, J. A., "Visualizing performance of parallel 
programs," Tech. Report ORNL/TM-11813, Oak Ridge National Laboratory, 
Oak Ridge, TN, 1991. 



www.manaraa.com

85 

[22] Hough, A. A., and Cuny, J. E., "Belvedere: Prototype of a pattern-oriented 
debugger for highly parallel computation," Proc. 1987 International Confer­
ence on Parallel Processing, Aug. 1987, pp. 735-738. 

[23] Joyce, J., Lomow, G., Slind, K., and Unger, B., "Monitoring distributed sys­
tems," ACM Transactiona on Computer Systems, Vol. 5, No. 2, May 1987, pp. 
121-150. 

[24] Jones, 0., Introduction to the X window system, Englewood Cliffs: Prentice 
Hall, 1988. 

[25] Kim, J., and Wright, C. T., "An object-oriented approach towards a general-
purpose performance visualization for parallel programs," Second Annual Mid­
west Electro-Technology Con/ercnce,_ApriI, 1993, pp. 6-9. 

[26] Kraemer, E., and Stasko, J. T., "The visualization of parallel systems: an 
overview," Journal of Parallel and Distributed Computing, 18, 1993, pp. 105-
117. 

[27] Krumme, D. W., and House, B. R., "Collecting performance data on loosely 
coupled multiprocessors," Proceedings of the Fourth Conference on Hypercube 
Concurrent Computers and Applications, Monterey, CA, Mar. 1989, pp. 225-
227. 

[28] Leblanc, T., Mellor-Crummey, J., and Fowler, R., "Analyzing parallel pro­
gram execution using multiple views," Journal of Parallel and Distributed 
Computing, 9, 1990, pp. 203-217. 

[29] Lehr, T., Segall, Z., Vrsalovic, D. F., Caplan, E., Chung, A., and Fineman, 
C. E., "Visualizing performance debugging," Computer, October, 1989, pp. 
38-51. 

[30] Lippman, S. B., C++ Primer, Massachusetts: Addison-Wesley Publishing 
Company, Inc. 1991. 

[31] Malony, A. D., Reed, D. A., Arendt, J. W., Aydt, R. A., Grabas, D. G., and 
Totty, B, K., "An integrated performance data collection, analysis, and visu­
alization system," Proceedings of the Fourth Conference on Hypercube Con­
current Computers and Applications, Monterey, CA, Mar. 1989, pp. 229-236. 

[32] Malony, A. D., Performance observability, Ph.D. Thesis, University of Illinois 
at Urbana-Champaign, 1990. 



www.manaraa.com

86 

[33] Mueller, F., "A library implementation of POSIX threads under UNIX," 1993 
Winter USENIX, Jan. 1993, pp. 29-42. 

[34] Nichols , K., and Edmark, J., "Modeling multicomputer systems with 
PARET," Computer, May 1988, pp. 39-48. (Parallel Architecture Research 
and Evaluation Tool). 

[35] Peterson, G. E., Tutorial: object-oriented computing. Vol. 1, Washington, 
D.C.: Computer Society Press, 1987: 

[36] Pinson, L. J., and Wiener, R. S., Applications of object-oriented programming, 
Massachusetts: Addison-Wesley Publishing Company, Inc. 1990. 

[37] Price, B. A., and Baecker, R. M., "The automatic animation of concurrent 
programs," Proceedings of the first Moscow International HCI Workshop, Aug. 
1991, pp. 128-137. 

[38] Price, B. A., Small, I. S., and Baecker, R. M., "A taxonomy of software 
visualization," Proceedings of the 25th Hawaii International Conference on 
System Sciences, Jan. 1992. 

[39] Reed, D. A., Olson, R. D., Aydt, R, A., Madhyastha, T. M., Birkett, T., 
Jensen, D. W., Nazief, B. A. A., and Totty, B. K., "Scalable performance en­
vironments for parallel systems," Technical Report, Department of Computer 
Science, University of Illinois at Urbana-Champaign, 1991. 

[40] Reed, D. A., Aydt, R. A., Madhyastha, T. M., Noe, R. J., Shields, K. A., and 
Schwartz, B. W., "The Pablo performance Analysis Environment," Technical 
Report, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1992. 

[41] Reilly, M. H., A performance monitor for parallel programs, Boston: Academic 
Press, Inc., 1990. 

[42] Rover, D. T., Prabhu, G. M., and Wright, C. T., "Characterizing the per­
formance of concurrent computers: a picture is worth a thousand numbers," 
Proceedings of the Fourth Conference on Hypercube, Concurrent Computers, 
and Applications, New York: ACM 1989. 

[43] Rover, D. T., Visualization of program performance on concurrent computers, 
Ph.D. Thesis, Iowa State University, Ames, lA, 1989. 



www.manaraa.com

87 

[44] Rover, D. T, and Wright, C. T., "Pictures of performance: highlighting pro­
gram activity in time and space," Proceedings of the Fifth Distributed Memory 
Computing Conference, D. Walker and Q. Stout, eds., vol. II, Los Alamitos, 
CA, April 1990, IEEE Computer Society Press, pp. 1228-1233. 

[45] Rover, D. T., Carter, M. B., and Gustafson, J. L., "Performance visualiza­
tion of SLALOM," Proceedings of the Sixth Distributed Memory Computing 
Conference, New York: IEEE Computer Society, 1991. 

[46] Rover, D. T., "A performance visualization paradigm for data parallel com­
puting," Proceedings of the 25th Hawaii International Conference on System 
Sciences, Jan. 1992. 

[47] Rover, D. T, and Wright, C. T., "Visualizing the performance of SPMD and 
data-parallel programs," Journal of Parallel and Distributed Computing, 18, 
1993, pp. 129-146. 

[48] Rudolph, D. C., and Reed, D. A., "CRYSTAL: Intel iPSC/2 operating system 
instrumentation," Proceedings of the Fourth Conference on Hypercube Con­
current Computers and Applications, Monterey, CA, Mar. 1989, pp. 249-252. 

[49] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., 
Object-oriented modeling and design, Englewood Cliffs: Prentice Hall, 1991. 

[50] Sarukkai, S. R., and Gannon D., "SIEVE: a performance debugging environ­
ment for parallel programs," Journal of Parallel and Distributed Computing, 
18, 1993, pp. 147-168. 

[51] Segall, Z., and Rudolph, L., "PIE: a programming and instrumentation envi­
ronment for parallel processing," IEEE Software, 2, 1985, pp. 22-37. 

[52] Simmons, Margaret, and Koskela, R., editors. Performance instrumentation 
and visualization. New York: ACM & Addison-Wesley, 1990. 

[53] Stroustrup, B., and Shopiro, J. E., "A set of C-f-|- classes for co routine style 
programming," 1987 USENIX C++ Papers, 1987, pp. 417-439. 

[54] Stroustrup, B., The C++ programming language. Second edition, Mas­
sachusetts:. Addison-Wesley Publishing Company, Inc. 1991. 



www.manaraa.com

88 

ACKNOWLEDGEMENTS 

I would like to express my deep appreciation to my major professor, Dr. Charles. 

T. Wright, for supervising my degree program and for invaluable advice and time 

guiding this work and correcting the dissertation. 

I wish to express my sincere thanks to Dr. Diane T. Rover in Michigan State 

University for suggesting this research topic. Thanks are also due to my committee 

members, Dr. Prabhu, Dr. J. Gustabson, Dr. J. Davis, and Dr. T. Smay, for taking 

time to help with my research. 

I appreciate the assistance of J. Metzger and M. Carter in the Ames Laboratory 

to help me use the facilities there. 

Finally, but most importantly, I would like to thank all my family. Special thank; 

goes to my parents for their continuous, enduring support and encouragement during 

the entire degree program. Also, thanks goes to my wife. Sun Ae. Without her love 

and sacrifice, I couldn't finish this work. I dedicate this work to my son, In Young. 

He hcis been always my dream and inspiration. 


	1994
	Performance visualization for parallel programs: task-based, object-oriented approach
	Jungsun Kim
	Recommended Citation


	tmp.1417477229.pdf.PMlPm

